Encapsulation of Anthocyanins and the Factors Affecting Their Stability as Natural Colorants in Food Products

Rahmi Holinesti (1), Yusniwati (2), Tuty Anggraini (3), Daimon Syukri (4)
(1) 1Doctoral Program in Agricultural Sciences, Faculty of Agriculture, Andalas University, Padang. Indonesia. 2Faculty of Tourism and Hospitality, Universitas Negeri Padang, Padang. Indonesia
(2) Faculty of Agriculture, Andalas University, Padang, Indonesia
(3) Faculty of Agricultural Technology, Andalas University, Padang. Indonesia
(4) Faculty of Agricultural Technology, Andalas University, Padang. Indonesia
Fulltext View | Download
How to cite (AJARCDE) :
Holinesti, R., Yusniwati, Anggraini, T., & Syukri, D. (2025). Encapsulation of Anthocyanins and the Factors Affecting Their Stability as Natural Colorants in Food Products. AJARCDE (Asian Journal of Applied Research for Community Development and Empowerment), 9(3), 27–33. https://doi.org/10.29165/ajarcde.v9i3.586

Colorants are commonly added to food products to enhance their visual appeal and increase consumer interest. Among the various types of natural pigments, anthocyanins—derived from fruits, vegetables, flowers, and tuberous plants—have garnered significant scientific interest due to their vivid coloration and associated health-promoting properties. Nevertheless, anthocyanins exhibit considerable sensitivity to environmental variables, including temperature, pH, oxygen exposure, ultraviolet (UV) radiation, and interactions with other molecular constituents. A range of environmental stressors can accelerate the deterioration of anthocyanin pigments during processing and storage, leading to a decrease in colour intensity. To counteract these destabilizing influences, various encapsulation strategies have been developed to protect anthocyanins from degradation. Among these, spray drying is widely recognized for its efficacy in maintaining both the physicochemical integrity and biofunctional performance of anthocyanin molecules. This review discusses the strategic importance of encapsulation in enhancing anthocyanin stability and examines the primary degradation mechanisms relevant to their application in food systems.


Contribution to Sustainable Development Goals (SDGs):
SDG 3: Good Health and Well-Being
SDG 9: Industry, Innovation and Infrastructure
SDG 12: Responsible Consumption and Production

[1] Ngamwonglumlert, L., Devahastin, S., & Chiewchan, N. (2017). Natural Colorants : Pigment Stability And Extraction Yield Enhancement Via Utilization Of Appropriate Pretreatment And Extraction Methods. Critical Reviews in Food Science and Nutrition, 57(15), 3243–3259. https://doi.org/10.1080/10408398.2015.1109498

[2] Molina, A. K., Corr, C. G., Prieto, M. A., & Pereira, C. (2023). Bioactive Natural Pigments’ Extraction, Isolation, and Stability in Food Applications. Molecules, 1–25.

[3] Juri?, S., Juri?, M., Król-Kili?ska, ?., Vlahovi?ek-Kahlina, K., Vincekovi?, M., Dragovi?-Uzelac, V., & Donsì, F. (2022). Sources, Stability, Encapsulation And Application Of Natural Pigments In Foods. Food Reviews International, 38(8), 1735–1790. https://doi.org/10.1080/87559129.2020.1837862

[4] Sari, Y., Santoni, A., & Elisabet, E. (2018). Comparative Test Of Color Stability Between Betalain Pigments Of Red Dragon Fruits And Anthocyanin Pigments From Tamarillo Fruit At Various Ph. Jurnal Kimia Sains Dan Aplikasi, 21(3), 107–112. https://doi.org/10.14710/jksa.21.3.107-112

[5] Vila, M. M. D. C., Chaud, M. V., & Balcão, V. M. (2015). Microencapsulation of Natural Anti-Oxidant Pigments. Microencapsulation and Microspheres for Food Applications, 369–389. https://doi.org/10.1016/B978-0-12-800350-3.00024-8

[6] Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins And Anthocyanins: Colored Pigments As Food, Pharmaceutical Ingredients, And The Potential Health Benefits. Food and Nutrition Research, 61. https://doi.org/10.1080/16546628.2017.1361779

[7] Tan, J., Han, Y., Han, B., Qi, X., Cai, X., Ge, S., & Xue, H. (2022). Extraction And Purification Of Anthocyanins : A Review. Journal of Agriculture and Food Research,

[8] Gérard, V., Ay, E., Morlet-Savary, F., Graff, B., Galopin, C., Ogren, T., Mutilangi, W., & Lalevée, J. (2019). Thermal and Photochemical Stability of Anthocyanins from Black Carrot, Grape Juice, and Purple Sweet Potato in Model Beverages in the Presence of Ascorbic Acid. Journal of Agricultural and Food Chemistry, 67(19), 5647–5660. https://doi.org/10.1021/acs.jafc.9b01672

[9] Vidana Gamage, G. C., Lim, Y. Y., & Choo, W. S. (2022). Sources And Relative Stabilities Of Acylated And Nonacylated Anthocyanins In Beverage Systems. Journal of Food Science and Technology, 59(3), 831–845. https://doi.org/10.1007/s13197-021-05054-z

[10] Teng, H., Fang, T., Lin, Q., Song, H., Liu, B., & Chen, L. (2017). Red Raspberry And Its Anthocyanins: Bioactivity Beyond Antioxidant Capacity. In Trends in Food Science and Technology (Vol. 66, pp. 153–165). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2017.05.015

[11] Silva, S., Costa, E. M., Calhau, C., Morais, R. M., & Pintado, M. E. (2017). Anthocyanin Extraction From Plant Tissues : A Review. Critical Reviews in Food Science and Nutrition, 57(14), 3072–3083. https://doi.org/10.1080/10408398.2015.1087963

[12] Shaik, A., Killari, K. N., & Panda, J. (2018). A Review On Anthocyanins : A Promising Role On Phytochemistry And Pharmacology. Int. Res. J. Pharm, 1. https://doi.org/10.7897/2230-8407.0911

[13] Priska, M., Peni, N., Carvallo, L., & Dala Ngapa, Y. (2018). Review: Antosianin Dan Pemanfaatannya. Cakra Kimia (Indonesian E-Journal of Applied Chemistry (Vol. 6, Issue 2).

[14] Wallace, T.C.; Giusti, M.M. Anthocyanins—Nature’s Bold, Beautiful, and Health-Promoting Colors. Foods 2019, 8, 550. doi: 10.3390/foods8110550

[15] Bendokas, V.; Skemiene, K.; Trumbeckaite, S.; Stanys, V.; Passamonti, S.; Borutaite, V.; Liobikas, J. Anthocyanins: From plant pigments to health benefits at mitochondrial level. Crit. Rev. Food Sci. Nutr. 2019, 60, 3352–3365. doi: 10.1080/10408398.2019.1687421

[16] Rahnasto-Rilla, M; Tyni, J; Huovinen, M; Jarho, E; Kulikowicz, T; Ravichandran, S; Bohr, V A; Ferrucci, L; Lahtela-Kakkonen, M; Moaddel, R (2018-03-07). Natural Polyphenols As Sirtuin 6 Modulators. Sci Rep. 7, 8 (1): 4163. doi:10.1038/s41598-018-22388-5.

[17] Klein MA, Denu JM (2020). Biological And Catalytic Functions Of Sirtuin 6 As Targets For Small-Molecule Modulators. Journal of Biological Chemistry. 295 (32): 11021–11041. doi:10.1074/jbc.REV120.011438.

[18] Tulio AZ, Reese RN, Wyzgoski FJ, Rinaldi PL, Fu R, Scheerens JC, Miller AR (2008). Cyanidin 3-Rutinoside And Cyanidin 3-Xylosylrutinoside As Primary Phenolic Antioxidants In Black Raspberry. Journal of Agricultural and Food Chemistry. 56 (6): 1880–8. doi:10.1021/jf072313k.

[19] He F, Liang NN, Mu L, Pan QH, Wang J, Reeves MJ, Duan CQ (2012). Anthocyanins And Their Variation In Red Wines I. Monomeric Anthocyanins And Their Color Expression. Molecules. 17 (2): 1571–601. doi:10.3390/molecules17021571.

[20] Afaq, F.; Syed, D. N.; Malik, A.; Hadi, N.; Sarfaraz, S.; Kweon, M.-H.; Khan, N.; Zaid, M. A.; Mukhtar, H. (2007). Delphinidin, an Anthocyanidin in Pigmented Fruits and Vegetables, Protects Human HaCaT Keratinocytes and Mouse Skin Against UVB-Mediated Oxidative Stress and Apoptosis. Journal of Investigative Dermatology. 127 (1): 222–232. doi:10.1038/sj.jid.5700510.

[21] Lätti AK, Riihinen KR, Kainulainen PS (2008). Analysis Of Anthocyanin Variation In Wild Populations Of Bilberry (Vaccinium myrtillus L.) In Finland. J Agric Food Chem. 56 (1): 190–6. doi:10.1021/jf072857m.

[22] Noda Y, Kneyuki T, Igarashi K, Mori A, Packer L (2000). Antioxidant Activity Of Nasunin, An Anthocyanin In Eggplant Peels. Toxicology. 148 (2–3): 119–23. doi:10.1016/s0300-483x(00)00202-x.

[23] Mazza G (2005). Compositional And Functional Properties Of Saskatoon Berry And Blueberry. International Journal of Fruit Science. 5 (3): 99–118. doi:10.1300/J492v05n03_10.

[24] Bakowska-barczak; Marianchuk, M; Kolodziejczyk, P (2007). Survey Of Bioactive Components In Western Canadian Berries. Canadian Journal of Physiology and Pharmacology. 85 (11): 1139–52. doi:10.1139/y07-102.

[25] Nakayama, M; Roh, MS; Uchida, K; Yamaguchi, Y; Takano, K; Koshioka, M (2000). Malvidin 3-Rutinoside As The Pigment Responsible For Bract Color In Curcuma Alismatifolia. Bioscience, Biotechnology, and Biochemistry. 64 (5): 1093–5. doi:10.1271/bbb.64.1093.

[26] Tatsuzawa, F (1999). Acylated Malvidin 3-Rutinosides In Dusky Violet Flowers Of Petunia Integrifolia Subsp. Inflata. Phytochemistry. 52 (2): 351–355. doi:10.1016/S0031-9422(99)00095-3.

[27] Markham, Kenneth R.; Mitchell, Kevin A.; Boase, Murray R. (1997). Malvidin-3-O-Glucoside-5-O-(6-Acetylglucoside) And Its Colour Manifestation In 'Johnson's Blue' And Other 'Blue' Geraniums". Phytochemistry. 45 (2) : 417–423. doi:10.1016/S0031-9422(96)00831-X.

[28] Huihua, Wan; Chao, Yu; Yu, Han; Xuelian, Guo (2019). Determination of Flavonoids and Carotenoids and Their Contributions to Various Colors of Rose Cultivars (Rosa spp.). Frontiers in Plant Science. 10: 123. doi:10.3389/fpls.2019.00123.

[29] Lin, Long-Ze; Harnly, James M.; Pastor-Corrales, Marcial S.; Luthria, Devanand L. (2008). The polyphenolic profiles of common bean (Phaseolus vulgaris L.). Food Chemistry. 107 (1): 399 –410. doi:10.1016/j.foodchem.2007.08.038.

[30] Levisson, Mark; Patinios, Constantinios; Hein, Sascha; de Groot, Phillip A. (2018). Engineering de novo anthocyanin production in Saccharomyces cerevisiae. Microbial Cell Factories. 17 (103): 103. doi:10.1186/s12934-018-0951-6.

[31] Li, Wenfeng; Gu, Mengyuan; Gong, Pengling; Wang, Jinxia (2021). Glycosides changed the stability and antioxidant activity of pelargonidin. Lebensmittel-Wissenschaft & Technologie. 147 (3): 111581. doi:10.1016/j.lwt.2021.111581.

[32] Saito, N; Tatsuzawa, F; Yokoi, M; Kasahara, K; Iida, S; Shigihara, A; Honda, T (1996). Acylated pelargonidin glycosides in red-purple flowers of Ipomoea purpurea. Phytochemistry. 43 (6): 1365–70. doi:10.1016/s0031-9422(96)00501-8.

[33] Jung Yeon Kwon; Ki Won Lee; Haeng Jeon Hur; Hyong Joo Lee (2007). Peonidin Inhibits Phorbol-Ester-Induced COX-2 Expression and Transformation in JB6 P+ Cells by Blocking Phosphorylation of ERK-1 and -2. Annals of the New York Academy of Sciences. 1095 (1): 513–520. doi:10.1196/annals.1397.055.

[34] Van-Den Truong; Nigel Deighton; Roger T. Thompson; Roger F. McFeeters; Lisa O. Dean; Kenneth V. Pecota & G. Craig Yencho (2009). Characterization of Anthocyanins and Anthocyanidins in Purple-Fleshed Sweetpotatoes by HPLC-DAD/ESI-MS/MS. Journal of Agricultural and Food Chemistry. 58 (1): 404–410. doi:10.1021/jf902799a.

[35] Wu, X., Beecher, G. R., Holden, J. M., Haytowitz, D. B., Gebhardt, S. E., & Prior, R. L. (2006). Concentrations Of Anthocyanins In Common Foods In The United States And Estimation Of Normal Consumption. Journal of Agricultural and Food Chemistry, 54(11), 4069–4075. https://doi.org/10.1021/jf060300l

[36] Di Khanh, N. (2015). Advances In The Extraction Of Anthocyanin From Vegetables. Journal of Food and Nutrition Sciences, 3(1), 126. https://doi.org/10.11648/j.jfns.s.2015030102.34

[37] Enaru, B., Dre?canu, G., Pop, T. D., St?nil?, A., & Diaconeasa, Z. (2021). Anthocyanins : Factors Affecting Their Stability And Degradation. In Antioxidants (Vol. 10, Issue 12). MDPI. https://doi.org/10.3390/antiox10121967

[38] Giusti, M. M., & Wrolstad, R. E. (2003). Acylated Anthocyanins From Edible Sources And Their Applications In Food Systems. Biochemical Engineering Journal, 14(3), 217–225. https://doi.org/10.1016/S1369-703X(02)00221-8

[39] Bakowska-Barczak, A. (2005). Acylated Anthocyanins As Stable, Natural Food Colorants – a Review. Polish Journal of Food And Nutrition Sciences, 1455(2), 107–116.

[40] Jokioja, J., Yang, B., & Linderborg, K. M. (2021). Acylated Anthocyanins: A Review On Their Bioavailability And Effects On Postprandial Carbohydrate Metabolism And Inflammation. Comprehensive Reviews in Food Science and Food Safety, 20(6), 5570–5615. https://doi.org/10.1111/1541-4337.12836

[41] Steingass, C. B., Burkhardt, J., Bäumer, V., Kumar, K., Mibus-Schoppe, H., Zinkernagel, J., Esquivel, P., Jiménez, V. M., & Schweiggert, R. (2023). Characterisation Of Acylated Anthocyanins From Red Cabbage, Purple Sweet Potato, And Tradescantia Pallida Leaves As Natural Food Colourants By HPLC-DAD-ESI(+)-QTOF-MS/MS And ESI(+)-Msn Analysis. Food Chemistry, 416. https://doi.org/10.1016/j.foodchem.2023.135601

[42] Diep, T. T., Yoo, M. J. Y., & Rush, E. (2022). Effect of tamarillo fortification and fermentation process on physicochemical properties and nutrient and volatiles content of yoghurt. Foods, 11(1). https://doi.org/10.3390/foods11010079

[43] Fernandino, C. M., Nepomuceno, A. T., Fonseca, H. C., Bastos, R. A., & De Lima, J. P. (2021). Physicochemical properties of tamarillo pulp (Solanum betaceum) and its applicability in the production of ice cream. Brazilian Journal of Food Technology, 24. https://doi.org/10.1590/1981-6723.09020

[44] Hasni, D., Rohaya, S., & Supriana, N. (2017). Kajian Pengolahan Sorbet Campuran Terong Belanda Dan Buah Bit Sebagai Produk Pangan Fungsional. Sagu , 16(1), 21–27.

[45] Pratama, D. R., Purwati, E., Yuherman, & Melia, S. (2021). The potential of probiotic frozen yoghurt with the addition of fruits tamarillo to increase immunity. IOP Conference Series: Earth and Environmental Science, 694(1). https://doi.org/10.1088/1755-1315/694/1/012070

[46] Syu, P.-C., Zhang, Q.-F., & Lin, S.-D. (2023). Physicochemical, Antioxidant, Sensory, and Starch Digestibility Properties of Steamed Bread Fortified with Tamarillo Powder. Foods, 12(12), 2306. https://doi.org/10.3390/foods12122306

[47] Noore, S., Rastogi, N. K., O’Donnell, C., & Tiwari, B. (2021). Novel Bioactive Extraction And Nano-Encapsulation. Encyclopedia, 1(3), 632–664. https://doi.org/10.3390/encyclopedia1030052

[48] Etzbach, L., Meinert, M., Faber, T., Klein, C., Schieber, A., & Weber, F. (2020). Effects Of Carrier Agents On Powder Properties, Stability Of Carotenoids, And Encapsulation Efficiency Of Goldenberry (Physalis peruviana L.) Powder Produced By Co-Current Spray Drying. Current Research in Food Science, 3(March), 73–81. https://doi.org/10.1016/j.crfs.2020.03.002

[49] Castro-Alatorre, N. C., Gallardo-Velázquez, T., Boyano-Orozco, L. C., Téllez-Medina, D. I., Meza-Márquez, O. G., & Osorio-Revilla, G. (2021). Extraction And Microencapsulation Of Bioactive Compounds From Muicle (Justicia spicigera) And Their Use In The Formulation Of Functional Foods. Foods, 10(8). https://doi.org/10.3390/foods10081747

[50] Castro-López, C., Espinoza-González, C., Ramos-González, R., Boone-Villa, V. D., Aguilar-González, M. A., Martínez-Ávila, G. C. G., Aguilar, C. N., & Ventura-Sobrevilla, J. M. (2021). Spray-Drying Encapsulation Of Microwave-Assisted Extracted Polyphenols From Moringa Oleifera : Influence Of Tragacanth, Locust Bean, And Carboxymethyl-Cellulose Formulations. Food Research International, 144(March). https://doi.org/10.1016/j.foodres.2021.110291

[51] Dayane, P., Santos, D. F., Thaís, F., Rubio, V., Palazzolli, M., Pinho, L. S., & Favaro-trindade, C. S. (2021). Microencapsulation of carotenoid-rich materials?: A review. Food Research Internationa, 147(110571), 1–25. https://doi.org/https://doi.org/10.1016/j.foodres.2021.110571

[52] Osvaldt Rosales, T. K., Pessoa da Silva, M., Lourenço, F. R., Aymoto Hassimotto, N. M., & Fabi, J. P. (2021). Nanoencapsulation Of Anthocyanins From Blackberry (Rubus Spp.) Through Pectin And Lysozyme Self-Assembling. Food Hydrocolloids, 114(June 2020). https://doi.org/10.1016/j.foodhyd.2020.106563

[53] Feitosa, B. F., Decker, B. L. A., Brito, E. S. de, Rodrigues, S., & Mariutti, L. R. B. (2023). Microencapsulation Of Anthocyanins As Natural Dye Extracted From Fruits – A Systematic Review. In Food Chemistry (Vol. 424). Elsevier Ltd. https://doi.org/10.1016/j.foodchem.2023.136361

[54] Celli, G. B., Ghanem, A., & Brooks, M. S. L. (2016). Optimized Encapsulation Of Anthocyanin-Rich Extract From Haskap Berries (Lonicera caerulea L.) In Calcium-Alginate Microparticles. Journal of Berry Research, 6(1), 1–11. https://doi.org/10.3233/JBR-150107

[55] Makhathini, N., Kaseke, T., & Fawole, O. A. (2023). Microencapsulation Of Organic Pomegranate Peel Extract For A Food Circular Economy: Effects Of Wall Materials On Powder Functional Attributes, Antioxidant Activity And Antimicrobial Property Against Foodborne Pathogens. Journal of Agriculture and Food Research, 14(September). https://doi.org/10.1016/j.jafr.2023.100780

[56] Velásquez-Barreto, F. F., & Velezmoro-Sánchez, C. E. (2022). Microencapsulation Of Purple Mashua Extracts Using Andean Tuber Starches Modified By Octenyl Succinic Anhydride. International Journal of Food Science, 2022. https://doi.org/10.1155/2022/8133970

[57] Šeregelj, V., ?etkovi?, G., ?anadanovi?-Brunet, J., Šaponjac, V. T., Vuli?, J., Levi?, S., Nedovi?, V., Brandolini, A., & Hidalgo, A. (2021). Encapsulation Of Carrot Waste Extract By Freeze And Spray Drying Techniques : An Optimization Study. Food Science and Technology, 138 (December 2020), 1–10. https://doi.org/10.1016/j.lwt.2020.110696

[58] Sharif, N., Khoshnoudi-Nia, S., & Jafari, S. M. (2020). Nano/Microencapsulation Of Anthocyanins; A Systematic Review And Meta-Analysis. Food Research International, 132. https://doi.org/10.1016/j.foodres.2020.109077

[59] Al Mubarak, A., Hamid, N., Kam, R., & Chan, H. (2019). The Effects of Spray Drying Conditions on the Physical and Bioactive Properties of New Zealand Tamarillo (Solanum betaceum) Powder. Acta Scientific Nutritional Health, 3(12), 121–131. https://doi.org/10.31080/asnh.2019.03.0545

[60] Jafari, S., Jafari, S. M., Ebrahimi, M., Kijpatanasilp, I., & Assatarakul, K. (2023). A Decade Overview And Prospect Of Spray Drying Encapsulation Of Bioactives From Fruit Products: Characterization, Food Application And In Vitro Gastrointestinal Digestion. In Food Hydrocolloids (Vol. 134). Elsevier B.V. https://doi.org/10.1016/j.foodhyd.2022.108068

[61] Jiménez-González, O., & Guerrero-Beltrán, J. Á. (2021). Extraction, Microencapsulation, Color Properties, and Experimental Design of Natural Pigments Obtained by Spray Drying. In Food Engineering Reviews (Vol. 13, Issue 4). https://doi.org/10.1007/s12393-021-09288-7

[62] Ramakrishnan, Y., Adzahan, N. M., Yusof, Y. A., & Muhammad, K. (2018). Effect Of Wall Materials On The Spray Drying Efficiency, Powder Properties And Stability Of Bioactive Compounds In Tamarillo Juice Microencapsulation. Powder Technology, 328, 406–414. https://doi.org/10.1016/j.powtec.2017.12.018

[63] Ledy Bulawan, Tjodi Harlim, L. B. (2022). Pengaruh Penambahan Alginat Pada Pembuatan Serbuk Terong Belanda (Cypomandra Betaceae). Chemical Engineering Journal, 1(1).

[64] Griep, P., da Silva, L. M., Tres, B. P., Colet, R., Junges, A., Steffens, C., Zeni, J., & Valduga, E. (2023). Effects of Encapsulating Agents and Temperature in the Microencapsulation of Carotenogenic Extracts from Sporidiobolus Salmonicolor CBS 2636 and Storage Stability. Biointerface Research in Applied Chemistry, 13(5). https://doi.org/10.33263/BRIAC135.449

[65] Hurtado, N. H., Morales, A. L., González-Miret, M. L., Escudero-Gilete, M. L., & Heredia, F. J. (2009). Colour, pH stability and Antioxidant Activity Of Anthocyanin Rutinosides Isolated From Tamarillo Fruit (Solanum betaceum Cav.). Food Chemistry, 117(1), 88–93. https://doi.org/10.1016/j.foodchem.2009.03.081

[66] Patras, A., Brunton, N. P., O’Donnell, C., & Tiwari, B. K. (2010). Effect Of Thermal Processing On Anthocyanin Stability In Foods; Mechanisms And Kinetics Of Degradation. Trends in Food Science and Technology, 21(1), 3–11. https://doi.org/10.1016/j.tifs.2009.07.004

[67] Azman, E. M., Yusof, N., Chatzifragkou, A., & Charalampopoulos, D. (2022). Stability Enhancement of Anthocyanins from Blackcurrant (Ribes Nigrum L.) Pomace through Intermolecular Copigmentation. Molecules, 27(17), 1–18. https://doi.org/10.3390/molecules27175489

[68] Miranda, P. H. S., Santos, A. C. dos, Freitas, B. C. B. de, Martins, G. A. de S., Vilas Boas, E. V. de B., & Damiani, C. (2021). A Scientific Approach To Extraction Methods And Stability Of Pigments From Amazonian Fruits. Trends in Food Science and Technology, 113(August 2020), 335–345. https://doi.org/10.1016/j.tifs.2021.04.047

Downloads

Download data is not yet available.